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1. Data Structure
Driver telematics data refers to a variety of data collected
from driving records of a vehicle either with a physical
device attached or an app on a real-time basis as in Figure 1.

Figure 1. [Left panel] 200 individual trips of a car driver with
[Right panel] resulting speed profiles of the three colored trips
(Wüthrich, 2017)

While raw telematics data are collected in a real-time basis,
usually automobile insurance premium is assessed per every
period of time with a tabular dataset. In this regard, we focus
our discussion on the integration of the so-called traditional
dataset and a telematics dataset where telematics features
are pre-processed in a tabular format tailored to be used in
fitting GLMs, which are widely used in actuarial practice
for ratemaking. We define S0 as a small dataset with M0

observations that contains both telematics (xi2) and tradi-
tional features, and S1 as a large dataset with M1 number
of observations that contains only traditional features (xi1)
as visualized in Figure 2. We also assume that the finite
population S consists of S0 and S1 and the total number of
observations in S is M .

2. Problem Description and Data Integration
Approaches

As we work with two datasets both in a tabular format,
here we want to estimate β = (β1,β2)

′ in a Poisson re-
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Figure 2. Pictorial visualization of S0, S1, xi1, and xi2

gression model1 E(Ni | xi) = exp(xiβ) = exp(xi1β1 +
xi2β2) where Ni is the response variable (claim frequency)
and observed throughout the population. In this case,
the census estimating equation for β can be written as∑M

i=1 U(β;xi, ni) = 0 where U(β;xi, ni) = {ni −
exp(xiβ)}xi.

Due to missingness of xi2 in S1, we solve the following
equation instead of the census estimating equation:

M∑
i=1

δiωiU(β;xi, ni) = 0, (1)

where δi = I(i ∈ S0). For comparison, we consider the
following approaches to estimate β for some ωi and subse-
quently predict the claim frequency Ni:

• Complete case method: Solve (1) for β assuming that
ωi = 1 for all i.

• Traditional method: Solve (1) for β1 assuming that
δiωi = 1 for all i and β2 = 0.

• Full method: Solve (1) for β assuming that δiωi = 1
for all i. So that it is expected to provide the best
prediction performance but may not be available in
practice.

1Note that uses of all the following methods are not restricted
to Poisson distribution but applicable to any types of discrete
distribution.
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• Boosting method: Solve (1) for β2 assuming that
ωi = 1 for all i and β1 equals to its estimate from the
traditional method as in Ayuso et al. (2019).

• Propensity score method: Estimate ωi so that ωi −
1 ∝ exp(ϕ0 +

∑L
l=1 bliϕl) and E[δiωi|x1i, ni] = 1

to handle the possible selection biases, where bli are
formed only using the traditional features (x1i) and
observed number of claims (ni). After that, solve (1)
for β by letting ωi = ω̂i for all i. See Appendix A for
details of this approach.

3. Data Analysis and Discussions
To quantify the impact of possible adverse selection in data
integration, we analyze two datasets here; (i) a simulated
dataset that mimics an actual insurance claims portfolio and
(ii) a synthetic dataset that is originally introduced by So
et al. (2021) and modified accordingly. (see Appendix B for
detailed descriptions of the datasets) Both datasets include
100, 000 observations and are treated as finite populations
of the automobile insurance policyholders with policy char-
acteristics and claims information. After that, we split them
into three disjoint samples; a small training set S0 with x1,
x2, and N , a large training set S1 only with x1 and N , and
a test set T under the following three scenarios on selec-
tion biases (random, age, and adverse selections) to test
the impacts of possible selection biases on each of the data
integration approaches. Firstly, 100,000 of data points are
bootstrapped at random as T for out-of-sample validation,
where {Ni,xi1,xi2} are all available. In this regard, T is
homogenous to the (unknown) population with telematics
features. After that, 100,000 of the data points are boot-
strapped as S0 with a sampling probability pi. Depending
on the availability of telematics information, we applied the
following sampling schemes of S0:

• Random selection: The data points assigned to S0 are
chosen at random, equivalently with pi = 0.1.

• Age selection: Each data point assigned to S0 is chosen
with pi =

1
1+exp(Insured.Age) .

• Adverse selection: Each data point assigned to S0 is
chosen with pi =

1
1+exp(Ni)

.

Lastly, 800,000 of data points are bootstrapped as S1 with
a sampling probability 1 − pi. Table 1 showcases the out-
of-sample validation results with the five approaches for
data integration under different scenarios on selection bi-
ases, which are measured by mean (and standard error)
of Poisson deviance in the test sets generated by 500 data
splits. It is observed that in general, the traditional method
(which excludes uses of telematics features) underperforms
the other methods regardless of possible selection biases,

which means simply discarding the telematics features from
the analysis may harm predictive performance severely. On
the other hand, the full method outperforms all the other
methods in all situation while it might not be available in
practice. Further, prediction performance of the complete
case method (which excludes uses of S1, an external dataset
with more data points but fewer features) is acceptable in
the cases of no selection biases or selection bias on the
observable covariates (driver’s age in our case), however,
its prediction performance is quite worse compared to the
full and propensity methods in the case of adverse selection.
Lastly, the propensity method could be a reasonable alter-
native of the full method as it shows comparable predictive
performance to that of the full method.

Table 1. Out-of-sample validation performance

RANDOM AGE ADVERSE

SIMULATED DATASET
COMPLETE 49.65 (0.91) 49.65 (0.91) 65.86 (2.20)
TRADITIONAL 52.55 (0.93) 52.55 (0.93) 52.55 (0.93)
BOOSTING 49.77 (0.83) 49.77 (0.83) 51.06 (0.90)
FULL 49.60 (0.91) 49.60 (0.91) 49.60 (0.91)
PROPENSITY 49.61 (0.91) 49.62 (0.91) 49.67 (0.91)

SYNTHETIC DATASET
COMPLETE 23.89 (0.28) 23.91 (0.28) 25.36 (0.37)
TRADITIONAL 26.74 (0.30) 26.74 (0.30) 26.74 (0.30)
BOOSTING 24.07 (0.27) 24.07 (0.28) 25.35 (0.37)
FULL 23.87 (0.28) 23.87 (0.28) 23.87 (0.28)
PROPENSITY 23.88 (0.28) 23.88 (0.28) 24.24 (0.71)

4. Future Research Directions
Possible future research directions are suggested in three-
fold. Firstly, as pre-processing of the telematics features in
a tabular format might lose their richness inherited from the
data generation scheme on a real-time basis, one can con-
sider integration of telematics data that is not summarized
in a tabular format with a traditional insurance dataset. It
would be more challenging as the traditional dataset is still
collected in a tabular format. Secondly, it can be worthy
to explore uses of neural network or tree-based models for
unbalanced data integration as they can handle the high-
dimensionality on its own. Lastly, the aforementiond data
structure can describe different problems such as health in-
surance cost prediction, where one can observe basic health
information (such as age, gender, and BMI) for a large
number of policyholders whereas only a few policyholders
provide detailed health information collected by digital de-
vices (such as dietary habits, work-out and sleep patterns).
To this end, we expect that this research can be an invitation
to encourage the ML community to consider this issue, data
integration with possible selection biases with more discus-
sions and advanced methodologies, which eventually would
end up with a better incentive structure for risk controls
and improvement of affordability and equity in insurance
provision.
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A. Propsensity Score Estimation of ωi via Information Projection
Here we observe (xi1, ni) in the sample S1, whereas we observe (xi1,xi2, ni) in the sample S0. In this case, we wish to
construct the propensity weight ωi = ω(xi1, ni) in S0 such that

∑
i∈S0

ωiU(β;xi, ni) =

M∑
i=1

[
δiU(β;xi, ni) + (1− δi)Ū(β;xi1, ni)

]
, (2)

where δi = I(i ∈ S0) and Ū(β;xi1, ni) = E{U(β;xi, ni) | xi1, ni}. The propensity score (PS) estimating equation
satisfying (2) is called self-efficient, as it leads to an efficient estimation of β as long as the conditional expectation in
E{U(β;xi, ni) | xi1, ni} is correct. Here, we assume that the sampling mechanism for S0 is missing at random (MAR) in
the sense of Rubin (1976). That is, we assume

δ ⊥ x2 | (n,x1).

To find ωi satisfying (2), we first find the basis functions satisfying

E{U(β;xi, ni) | xi1, ni} ∈ span{b1(xi1, ni), . . . , bL(xi1, ni)}. (3)

Now, using the basis functions in (3), we impose

∑
i∈S0

ωi[1, b1i, · · · , bLi] =

M∑
i=1

[1, b1i, · · · , bLi] (4)

as a constraint for propensity weights ωi, where bli = bl(xi1, ni). Constraint (4) is often called the covariate-balancing
property (Imai & Ratkovic, 2014) or calibration property (Deville & Särndal, 1992).

Now, as long as (4) is satisfied, we can express

∑
i∈S0

ωiU(β;xi, ni) =

M∑
i=1

δiωiU(β;xi, ni) +

M∑
i=1

(1− δiωi)

L∑
k=0

αkbki

=

M∑
i=1

{
δiU(β;xi, ni) + (1− δi)

L∑
k=0

αkbki

}
+

M∑
i=1

δi(ωi − 1)

{
U(β;xi, ni)−

L∑
k=0

αkbki

}
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for any α = (α0, α1, . . . , αL). Thus, for the choice of α̂ satisfying

M∑
i=1

δi(ωi − 1)

{
U(β;xi, ni)−

L∑
k=0

α̂kbki

}
= 0, (5)

we can obtain ∑
i∈S0

ωiU(β;xi, ni) =

M∑
i=1

{
δiU(β;xi, ni) + (1− δi)

L∑
k=0

α̂kbki

}
. (6)

Furthermore, the condition in (5) under model (3) implies that
∑L

k=0 α̂kbki is an estimator of E{U(β;xi, ni) | xi1, ni}.
Thus, we can see that (6) shows the self-efficiency in (2). That is, the calibration condition (4) on the basis functions in (3) is
a sufficient condition for self-efficiency.

Now, to uniquely determine ωi, we can use the information projection of Wang & Kim (2021) under the constraint (4) to get

ωi = 1 +
M1

M0
exp {ϕ0 + ϕ1b1i + · · ·+ ϕLbLi} , (7)

where M0 =
∑M

i=1 δi, M1 = M −M0 and ϕ = (ϕ0, · · · , ϕL) is an unknown parameter. The parameters are estimated by
solving the calibration equation in (4).

Once ϕ0, · · · , ϕL is estimated by (4), we can use

ω̂i = 1 +
M1

M0
exp

{
ϕ̂0 + ϕ̂1b1i + · · ·+ ϕ̂LbLi

}
as the final propensity weights for estimating β using (8):∑

i∈S
δiω̂i(ϕ)U(β;xi, ni) = 0, (8)

where S = S0 ∪ S1 be the combined sample. Because the propensity weights satisfy the calibration equation in (4), it
satisfies the self-efficiency without estimating the regression coefficients α̂ in the regression model

E{U(β;xi, ni) | xi1, ni} =

L∑
k=1

αkbl(xi1, ni).

To estimate the standard error of the estimates, note that there are two models in this method. One is the PS model (with
parameter ϕ) and the other is the regression outcome model (with parameter β). We can construct two estimating functions
for estimating two parameters as follows.

Û1(ϕ) =
∑
i∈S

{δiωi(ϕ)− 1}bi,

Û2(ϕ, β) =
∑
i∈S

δiω̂i(ϕ)U(β;xi, ni),

where bi = (1, b1i, · · · , bLi)
′ and

ωi(ϕ) = 1 +
M1

M0
exp {ϕ0 + ϕ1b1i + · · ·+ ϕLbLi} .

The final estimator β̂ is the solution to the joint estimating equations:

Û1(ϕ) = 0 and Û2(ϕ,β) = 0.

We can treat θ′ = (ϕ′,β′) and define

Û(θ) =

(
Û1(ϕ)

Û2(ϕ,β)

)
.
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The variance estimation for θ̂ can be implemented using the Sandwich formula. That is, V (θ̂) = τ−1V (Û)τ−1′ where
τ = E

{
∂

∂θ′ Û(θ)
}

.

One can use an empirical estimate of V (θ̂) as follows:

τ̃ =
∂

∂θ′
Û(θ)

∣∣∣∣
θ=θ̂

and Ṽ (Û) =
∑
i∈S

(Ũi − Ũ i)(Ũi − Ũ i)
′

as a proxy of τ and V (Û), respectively where θ̂′ = (ϕ̂′, β̂′) is the solution of the joint estimating equation and

Ũi =


{
δiωi(ϕ̂)− 1

}
bi

δiω̂i(ϕ̂)U(β̂;xi, yi)

 , Ũ i =
1

M

∑
i∈S

Ũi.

B. Description of the Simulated and Synthetic Datasets
For the simulation study, we generate a finite population of size 100, 000 with the following specification:

Ni ∼ P(λi), log λi = xi1β1 + xi2β2, β1 = (β0, βA1, βA2, βG),

β2 = βT , x1i = (1, xAi, x
2
Ai, xGi), x2i = xTi,

xAi ∼ U(0.18, 0.81), xGi ∼ Ber(0.6), xTi ∼ N (0, 1),

β0 = −1.3, βA1 = −4, βA2 = 3.4, βG = 0.1, βT = 0.5,

where P, U , Ber and N refer to Poisson, uniform, Bernoulli, and normal distributions, respectively. Here, xAi refers to
a traditional continuous variable with quadratic effect (e.g., driver’s age), xGi refers to a traditional binary variable (e.g.,
geographic location - urban/rural), and xTi refers to a telematics variable of significant impact on the risk profile.

The synthetic dataset is an emulated dataset from an actual insurance claims data with telematics features by adding
perturbation. While it still preserves characteristics of the original dataset, it is not identical to the original dataset so
that it is publicly available at https://www2.math.uconn.edu/˜valdez/telematics_syn-032021.csv
without proprietery issues or privacy concerns. It contains traditional characteristics (including age of the drivers), telematic
characteristics, and the response variable, which is the claim counts. Note that all of the aforementioned data integration
approaches is based on estimating equations (and equivalently GLMs) so that it lacks the ability to handle high-dimensionality
on its own, unlike neural network models or tree-based models. In this regard, we further processesed the original dataset of
So et al. (2021) to handle such high-dimensionality issues as described in Jeong (2022). For the resulting variables and their
descriptions, see Table 2.

https://www2.math.uconn.edu/~valdez/telematics_syn-032021.csv
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Table 2. Variable descriptions of the pre-processed synthetic dataset

VARIABLE DESCRIPTION

TRADITIONAL
DURATION DURATION OF THE INSURANCE COVERAGE OF A GIVEN POLICY, IN DAYS
INSURED.AGE AGE OF INSURED DRIVER, IN YEARS
INSURED.SEX SEX OF INSURED DRIVER (MALE/FEMALE)
CAR.AGE AGE OF VEHICLE, IN YEARS
MARITAL MARITAL STATUS (SINGLE/MARRIED)
CAR.USE USE OF VEHICLE: PRIVATE, COMMUTE, FARMER, COMMERCIAL
CREDIT.SCORE CREDIT SCORE OF INSURED DRIVER
REGION TYPE OF REGION WHERE DRIVER LIVES: RURAL, URBAN
ANNUAL.MILES.DRIVE ANNUAL MILES EXPECTED TO BE DRIVEN DECLARED BY DRIVER
YEARS.NOCLAIMS NUMBER OF YEARS WITHOUT ANY CLAIMS
TERRITORYEMB EMBEDDED VALUE FROM THE TERRITORIAL LOCATION OF VEHICLE

TELEMATICS
ANNUAL.PCT.DRIVEN ANNUALIZED PERCENTAGE OF TIME ON THE ROAD
TOTAL.MILES.DRIVEN TOTAL DISTANCE DRIVEN IN MILES
PCT.DRIVE.XXX PERCENT OF DRIVING DAY XXX OF THE WEEK: MON/TUE/. . . /SUN
PCT.DRIVE.RUSH.AM PERCENT OF DRIVING DURING AM RUSH HOURS
PCT.DRIVE.RUSH.PM PERCENT OF DRIVING DURING PM RUSH HOURS
AVGDAYS.WEEK MEAN NUMBER OF DAYS USED PER WEEK
ACCEL.06MILES NUMBER OF SUDDEN ACCELERATION 6MPH/S PER 1000MILES
BRAKE.06MILES NUMBER OF SUDDEN BRAKES 6MPH/S PER 1000MILES
ACBR.OTHERS TOTAL NUMBER OF SUDDEN ACCELERATION AND BRAKES

8/9/. . . /14 MPH/S PER 1000MILES
LEFT.TURNS NUMBER OF LEFT TURN PER 1000MILES WITH INTENSITY

GREATER THAN EQUAL TO 8
RIGHT.TURNS NUMBER OF RIGHT TURN PER 1000MILES GREATER THAN EQUAL TO 8

RESPONSE
NB CLAIM NUMBER OF OBSERVED CLAIMS


